Homework 3

1. (10 + 10 + 10 points) Consider the following two-party functionalities.

OT-channel:

- Input: Sender has inputs $(x_0, x_1) \in \{0, 1\}^2$ and Receiver has no input.
- Output: Let $b \stackrel{\$}{\leftarrow} \{0, 1\}$ and define $z := x_b$. Output (b, z) to the Receiver and nothing to the Sender.

OT:

- Input: Sender has inputs $(x_0, x_1) \in \{0, 1\}^2$ and Receiver has input $b \in \{0, 1\}$.
- Output: Let $z := x_b$ and output z to the Receiver and nothing to the Sender.

Using one copy of OT-channel, construct one copy of OT against semi-honest adversaries. Give the protocol and the two simulation strategies to exhibit the protocol's semi-honest security.

2. (20 points) Let \mathbb{G}_1 and \mathbb{G}_2 be multiplicative groups. Let g be a generator of the group \mathbb{G}_1 and $q = |\mathbb{G}_1|$. Suppose their exists a bilinear map $e: \mathbb{G}_1 \times \mathbb{G}_1 \to \mathbb{G}_2$ with the following property: $e(g^a, g^b) = e(g, g)^{ab}$, where $a, b \in \{0, \ldots, q-1\}$ and e(g, g) is a generator of the group \mathbb{G}_2 .

Consider the following two computational assumptions:

Assumption 1:

- $\mathcal{D}_0 = (g, g^a, g^b, g^c, g^{abc})$, where $a, b, c \stackrel{\$}{\leftarrow} \{0, \dots, q-1\}$.
- $\mathcal{D}_1 = (g, g^a, g^b, g^c, g^d)$, where $a, b, c, d \stackrel{\$}{\leftarrow} \{0, \dots, q-1\}$.

Assumption: $\mathcal{D}_0 \approx_c \mathcal{D}_1$.

Assumption 2:

•
$$C_0 = (g, g^a, g^b, g^c, e(g, g)^{abc})$$
, where $a, b, c \stackrel{\$}{\leftarrow} \{0, \dots, q-1\}$.
• $C_1 = (g, g^a, g^b, g^c, e(g, g)^d)$, where $a, b, c, d \stackrel{\$}{\leftarrow} \{0, \dots, q-1\}$.
Assumption: $C_0 \approx_c C_1$.

Show that: Assumption 1 implies Assumption 2.